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Abstract

A generalization and the dual version of the following result due to

Firey is given: The mixed area of a plane convex body and its polar dual is

at least K. We give a sharp upper bound for the product of the dual cross-

sectional measure of any index and that of its polar dual. A general result

for a convex body K and a convex increasing real valued function gives

inequalities for sets of constant width and sets with equichordal points as

special cases.





Introduction

Polar dual convex bodies are useful in geometry of numbers [17],

Minkowski geometry [10, 11] and differential equations [12J. We assume a

familiarity with the elementary concepts from the theory of convex sets.

Benson [2], Bonnesen and Fenchel [3J, Eggleston [7], and Yaglom and

Boltyanskii [23] have good treatments of the required background material

for this paper.

The preliminary definitions and concepts used in this work are given

in the next section. A generalization and dual version of the following

result due to Firey 18) is given: The mixed area of a plane convex body and its

polar dual is at least Tl . We give a sharp upper bound for the product of the

dual cross-sectional measure of any index and that of its polar dual. A

general result for a convex body K and a convex increasing real valued

function gives inequalities for sets of constant width and sets with

equichordal points as special cases.

Preliminaries

By a convex body in R" we mean a compact convex subset of R" with

nonempty interior. All convex bodies are assumed to contain the origin in

their interiors. For each direction ueS* ' where S"' is the unit sphere

centered at the origin in /?", we let h(K,u) denote the support function of the

convex body K evaluated at u. Thus,

(1) h(K,u) = sup {ux:xeK}
,

which may be interpreted as the distance from the origin to the supporting

hyperplane of A' having outward-pointing normal u. The width of A' in

direction u, denoted \\ (K,u), is given by

(2) WfK.u) = liiK.u) + h{K,-u).



A convex body K is said to have constant width b if, and only if, W(K,u) = b for

all ueS" ' For a plane convex body K we shall use the notation h(K,6) =

h(K,u), where u = (cos 6, sin 0). In this case the width of K in the direction 6

can be written as

(3) w(K,e ) = h{K,e ) + /i(K,e+n).

The polar dual (or polar reciprocal) of a convex body K, denoted by A",

is another convex body having the origin as an interior point and is defined

by

(4) A" = [y\x-y<\ for all xe A} .

This definition depends upon the origin. If A" is the origin, then A* is the

whole space. If A' is any other single point, then K' is a closed half space.

The polar dual has the property that

h(K',u) = and
(5) p (K,u)

h{K,u)

where p (K,u) and p (fCu) denote radial functions of A" and A" respectively,

defined by

(6) p (K,u = sup{A >0 I AueS n ~ ]

)

Let B be the closed unit ball in R\ The outer parallel set of A' at

distance A > is given by

(7) K
X
=K + ?,B.

The convex body K\ consists of all points in R" whose distance from K is less

than or equal to X. It turns out that the volume V(K
X)

is a polynomial in X

whose coefficients are geometric invariants of A:

n

(8) \'(A+Ai5)-X U;(A)A'
I l J



The functionals IV, (K) do not have a standard name in English. In German

W, (K) is the i Quermassintegral of K. It is roughly the i cross-sectional

measure of K. Bonnesen and Fenchel 13 J and Hadwiger U5J are standard

references for the study of Quermassintegrals. The following is true:

(9) W (K) = V(K); nW
x
(K) = S(K); W

m
(K) = co„ where V(K) and S(K) are the

volume and surface area of K respectively and co.is the volume of the unit

ball B in R\ It turns out that IV.
,
(K) has an interesting representation. The

mean width of K, denoted by W(K) is given by

(10) W(K) =— \\V{K,u)du
«».5-'

where du is the area element on S" . Then in fact

(11) Wn_ l
(K) = ^W(K) = ^- \\V{K,u)du.

2 In
5
L

By using (2) and (11), one obtains

(12) WHl (K) = - \h{K,u)du.
n J

5-'

The \\\(K) are special cases of a set of functionals, depending on more

than one convex body, introduced by Minkowski (in the 3-dimensional case).

If Kv ---,K
r
are convex bodies in /?"and A p ---,A

r
range over the positive

real numbers, then the volume of X
l
K

1
+--'+X

r
K

r
is a homogeneous

polynomial, of degree n, in A p ---,A
r

. That is

(13) va
i

K]+-+x r
K

r ) = Xt\...j h-K
where the coefficients a

,
•••,. depend only on ^v

- "'^'.- We may assume that

coefficients are chosen so as to be invariant under permutations of their

subscripts. Then these coefficients are called mixed volumes and denoted by

#,,-••,„ - I (^v'"'^s, ) to indicate their dependence on ^v*"»^,. We have, in

other words,

(14) va
i

K
]

+-~+X
r
K r ) = YV{K

l
t -~,K, U, •••/.,



where h,"-Jn range independently over l,--,r Important properties of mixed

volumes are discussed in Eggleston [7].

It follows from (8) that

(15)
W

l
(K) = V(K,.~ y K, Z^vfi),

n-i i

which is sometimes used as a definition of W
S (K).

The dual mixed volumes are defined in Lutwak [18] by

\7(K„.-.,tf ) = - \p {K
x

,u)~-p {K
n
,u)du

n J(16)

where du signifies the area element on S
H

. Let

(17) V(K
l
,K

2
) = V(K

l

,---,K„K
2
,---,K

2 )
* v ' * V "

m-i i

The dual cross-sectional measures are the special dual mixed volumes

defined by

(18) \V(K) = V(K,B)

where B is the unit ball in R". We shall use the following results of Lutwak

[18]:

(19) \V
i

(K)<v'"
>:

co/\

and

(20) V"(K
l
,---,KJ<V(K

l
)---V(KJ.

After obtaining inequalities for mixed volumes and dual mixed

volumes, we shall use the following definitions to prove geometric

inequalities for sets of constant width and sets with equichordal,

equiproduct and equireciprocal points. A point P is an equichordal point of a

convex region K if and only if all the chords through P have the same

length. If the origin is an equichordal point with chord length 2, then

(21) p {K,u) + p {K-u)-2.



P is an equiproduct point of a convex region K if and only if each chord

through P intersects the boundary of K at points A and B such that the

product of PA and PB is constant. If the origin is an equiproduct point with

constant 1, then

(22) p (K,u)p {K,-u) = \.

Pis an equireciprocal point of a convex region K if and only if each chord

1 1

through P intersects the boundary of K in points A and B such that tjt
+ ^W

is a constant. If the origin is an equireciprocal point with constant 2, then

+ = 2.

(23) p(K,u) p{K-u)

Klee [21] has a discussion of sets with equichordal, equiproduct, or

equireciprocal points.

A" is a set of constant relative width b if, and only if,

(24) K + (-K) = bE,

where £ is the unit ball of a given Minkowski space (n — dimensional

Banach space).

Results

Theorem 1 below implies a generalization of the following result, due

to Firey [8], as a special case: The mixed area of a plane convex body and its

polar dual is at least ti.

Theorem 1

.

Consider n convex bodies K yK iy
---,KKA in/?". Then the

mixed volumes V(K, #,,-••, *„_,), V{K\K
X

,---,K Dl ),V(B,K,, ••-,#,.,) satisfy

(25) V(^,^
1
,.-,^.

1
)V(A",K

I
,-,K

n .
1
)>V 2

(B,K
1
,-,^_

1
).

Proof. By definition,

V{K,KV~-,K^) = - \h(K,u)dS (K
]

,---,k\ r ii)

n J

and



n J

Multiply both sides of the above two equalities and use h(K'*u) - —jz - and

the Cauchy Schwarz inequality to obtain

n*V(K,K
i

,-,K^)V{K',K
i
,~.,K^) =

= (jfi(KM)dS(K
l
r--,K m _

l )](j
1

P {K t u)
dS{Kl9-,K^)

> Jvma'.m;

V

4p~(K^u)
dS (*„•••.*-.)

> (jdS{Klt ... tK^u)\ = n*V*iB,Klt...,K^).

The last inequality follows since h{K,u)>p {K,u).m

Corollorv 1.1. The mixed volume of A' and K',V(K',K,"-,K), satisfies

(26) V{K-,K,---,Ky>a)lV(K)
m2

where &>„is the volume of an n - dimensional unit ball and V(K) denotes the

volume of K.

Proof. Let A', = K
2
=•••= A', , = K. Then (25) reduces to

Use the general isoperimetric inequality,

-S(K)
n

S" >n"CO\'"\

to obtain (26)-B

The case n - 2 gives Firey's result. The following result can be

obtained from Theorem 1 as a special case.

Corollorv 1 .2. Let A be a convex body and A" its polar dual then

(27) U nl (A'jU n) (/v'-)>o);.



Proof. Let K
x

= K
2
= --=Km] =B in Theorem 1. Use (15) and (25) to

obtain (27)*

The problem of finding the infimum of the product W
K
(K)W

X
(IC) for all

convex bodies K, for each i, is not completely solved. See Bambah (1],

Dvoretzky and Rogers [6], Firey [9], Guggenheimer [13,14], Heil (16J, Lutwak

118J, and Steinhardt 122] for partial results. In Theorem 3 we use an

inequality due to Blaschke-Santalo (see Theorem 2) concerning the product

of volume of a convex body K and its polar dual K" with respect to the Santal6

point of A'. The Santalo point of K is often defined as the unique point in the

interior of K with respect to which the volume of the polar dual is a

minimum. For a good discussion of the Blaschke-Santalo inequality and a

further list of references, see Lutwak [201.

Theorem 2 (The Blaschke-Santalo inequality). Assume K is a convex

body in R" and A~is its polar dual with respect to the Santalo point of K. Then

V(K)V(K')<col,

with equality if and only if K is an ellipsoid.

Theorem 3 . Let K be a convex body in R\ Assume A" is the polar dual

of A' with respect to the Santalo point. Then the dual mixed volume of A' and

K',V{K\K,~-,K), satisfies

(28) V{K\K,---,Ky <a) 2V(Ky 2

Proof. Bv (20).

V"(K\K,---,/<)<V(K-)V(Kr l

.

Use Santalo's inequality,

V(K)V(K')<co\
f

to obtain the desired inequality.g

7



The case n = 2 in Theorem 3 above gives a result similar to Firey's

result. The dual mixed area of a plane convex body and its polar dual with

respect to the Santalo point is at most n.

The following theorem concerning dual mixed volumes will

generalize Santald's inequality.

Theorem 4. Let K
x
and K

2
be two convex bodies. Assume A'," and K

2
'are

the polar dual of AT, and K
2
with respect to the Santal6 points respectively.

Then the dual mixed volumes V(K
itK2 ) and V(Ay ,K

2 ) satisfy

(29) V{K„K
2
)V{K;,K

2')<(Dl.

Proof. Lutwak [18J shows that

V^KJZViKi) 7 V{K
2 )\ 0<i<n.

Replace K
t

by K;, (i = 1,2), to obtain

V{K;,K
2
')<V(K;)^ V(Ktf-

Multiply both sides of the above two inequalities and use Santalo's

inequality to obtain the desired result*

If K
i

= K
2
= K then (29) reduces to Santalo's inequality. If

K
t

= K, K
2
= B then (29) reduces to the following corollary.

Corollary 4.1

.

Assume K is a convex body in R\ Assume hC is the

polar dual of K with respect to Santalo point. Then

(30) \V(K)\V(K-)<0)
m
\

Theorem 5 below is a general result which gives inequalities for sets

of constant width and sets with equichordal point as special cases. See

Chakerian and Groemer [4] for an excellent survey of sets of constant width.

Theorem 5. For a convex body K and convex increasing real valued

function cp define g(K) by

8



g(K)= \<p (p (K,u))du.

s"-

The functional g satisfies

(31)
£

*, + *,

2

and equality holds if and only if K
x
= K

2

Proof. g(K;) + g(K;)
=

|

> (p jK
x

;u)) + q> (p (*;.«0)j
^

2
"
J 2
s- 1

J
<P [- ! y — J du >

J
cp [

5--1 s"->

1 1+
-J du.

p {k;,u) p (jr
a\io

The first inequality uses the convexity of (p . The second inequality follows

since (p is increasing and the arithmetic mean is greater than or equal to

the harmonic mean.

We now use (5) and the linearity property of the support function to

obtain,

[ (p [2{p (#,»"' +p (Ki.ufy
1

] du =

h(K,,u) + h(K
2
,u)

(M
K, + K

-,«)) du =

= 1^(p (i^Y^)\u)\iu = g
\!L±JL)

Thus, (31) follows. For equality to hold, it is necessary that

p {K *,/*) =p (K'
2
,u) which implies A', = K

2
. For example, equality of the

arithmetic and harmonic means of

p (K',u) and p (K'
2
,u) implies p (K',u) = p {K

2
\u) m



One can use (31) and continuity of g to derive

1

r

(32) ^I«<02«
* 1= 1

<^>

using the standard argument that leads to Jensen's inequality. More

generally if {K
t

: < t < 1} is a family of convex bodies and K = {K
t
)dt is the

Jo

Minkowski-Riemann integral (see Dinghas 15J ) then

(33) g(K-)<^g{K;)dt.

Corollary 5.1. The n- dimensional volume of the polar reciprocal of a

set K of constant relative width 2 satisfies

(34) V(lf)l V(t).

Equality holds if and only if A' = £, the unit ball in the given Minkowski

space.

Proof. Let <p (/) = — /".Then <P is an increasing convex function. For
n

any set K,g(K) - V(K) where g is defined as in Theorem 5. Hence using (31),

2 2 2

By Theorem 5 equality holds if and only if A" --K -Em
Corollary 5.2. Let fC be the polar dual of a set K of constant width 2 in R\

Then

(35) \V
t
{K-)>\\'XBl i = (U2,-,n-l,

with equality if and only if A' is a unit ball.

Proof. By Corollory 5.1,

(36) V(K-)>0)
H

with equality if and only if K = B. This is the case i = since WJfT) = \'(fC).

Hadwiger |15|, page 278 shows that for any convex set K,



(37) WW^a', V(AT".

replacing K by fC in (37) and using (36) implies (35).

The following is an easy consequence of Corollary 5.2 for a set with an

equireciprocal point.

Theorem 6. IfK is a convex set with an equireciprocal point corresponding

to constant 2 then

(38) W
i
(K)>W

i

(B), 1 = 0,1,2, ..,«-l,

with equality if and only if K is a unit ball centered at the origin.

Proof. (23) and (5) imply that K is a set of constant width 2. The fact

that (K-)' = K and Corollary' 5.2 imply (38).

Theorem 7. If A' has an equichordal point with chord length 2, then

(39) W^(K-)>co
m ,

with equality if and only if AT is the unit ball centered at the origin.

Proof. The width of /T in direction u satisfies

(40) W(K\u) = h(K\u) + h(K,-u) > = 2,

p (A',«0 + P (K,~u)

where we have used the inequality between arithmetic and harmonic

means, (5), and (21). Then the mean width of A", denoted by U'(A'"), satisfies

f41)
IV (*') =— \\V{K\u)du>— \ 2du>2.

But

(42)
W

HJK') = ^-W(K')>^-2 = co
H ,

as we wanted to show. Equality holds if and only if p (K,u) - p (K,-u) = 1

,

which implies A' is a unit ball centered at the origin.

Theorem 8. If A' has an equiproduct point with constant 1,

then

(43) U;(A')>U;(tfU = 0,l,2,---,rt-l



Proof. We first prove the case i = 0. Namely, V(K) > con . Together the

inequality between arithmetic and geometric means and (22) imply

(44) p (K,u)+p (K-u) > 2Vp (K,u)p (K,-u) = 2.

Also,

(45) ViK) = I
f[p

(K.u)]"du = 1
J

'P (*»)>• + (P ^.-»))"
rfB .

Convexity of the funtion x" implies

(46)

n J~ 2
U

n J 2
S" ' 5" '

Equations (44), (45) and (46) imply the result for i = 0, namely,

V(K)>- \du = -na> = a) .

(47) «/, "

Equality holds if and only if p (#,«) = p (K,-u). Using (21), equality holds if

and only if p (K,u) = p (K,-u) = \ which gives a unit ball centered at the

origin.

To prove (43) we use (37), noting that equality holds if and only if A" is

the unit ball centered at the origin.

p

12
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